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A model for the long-term viscoelastic behavior 
of aging polymers 

Aleksey D. Drozdov* 
Institute for Industrial Mathematics, Ben-Gurion University of the Negev, 
22 Ha-Histadrut Street, Be'ersheba, 84213 Israel 

A constitutive model is derived for the physical aging of amorphous polymers. The model is based on the concept 
of transient networks, where a viscoelastic medium is treated as a system of adaptive links which break and arise 
due to micro,Brownian motion. Loss and reformation rates for the adaptive links are assumed to depend on the 
free volume fractions which, in turn, are governed by some kinetic equations. The model permits the long-term 
viscoelastic behaviour to be predicted based on experimental data obtained in standard short-term creep and 
relaxation tests. To verify the constitutive equations, we compare results of a numerical simulation with 
experimental data for several polymers, and demonstrate fair agreement between observations and their 
prediction: © 1997 Elsevier Science Ltd. All rights reserved. 
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INTRODUCTION 

This paper is concerned with the long-term viscoelastic 
behaviour of physically aging polymers. We confine 
ourselves to the analysis of amorphous polymers at small 
strains when the mechanical response may be treated as 
linear. 

Physical aging of amorphous and semicrystalline poly- 
mers has attracted essential attention in the past three 
decades (see, for example, Refs. 1-6, to mention a few). 
Aging means changes in the viscoelastic response of 
specimens quenched from the glass transition temperature 
®g to some temperature 0 < @g and annealed for a time te 
at temperature ~) before loading. 

Experimental data obtained in static short-term tests 
demonstrate a significant dependence of relaxation moduli 
on the elapsed time te. These data show that aging of 
amorphous polymers at small strains affects mainly the 
relaxation (retardation) spectra, which implies an opportu- 
nity to construct a creep (relaxation) master curve using an 
arbitrary set of short-term creep (relaxation) curves 
measured at various elapsed times (the time-aging time 
superposition principlet). 

A most important question remains about physical 
meaning of the master curve. Comparing experimental 
data obtained in short- and long-term tests, Struik | 
demonstrated that the master curve did not predict correctly 
creep in poly(vinyl chloride) when the duration of the 
measurements is comparable with the characteristic time of 
aging. Similar results were exposed by Matsumoto 7 for 
poly(ether imide) and polycarbonate and by Read e t  al. 8- io 

for polypropylene and poly(vinyl chloride). Thus, a problem 
arises as to how to transform a master curve in such a way to 
adequately describe the long-term creep (relaxation) in 
aging media. 

Read e t  al.8'9 proposed an approach for predicting long- 
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term creep (up to  l 0  6 ( s ) )  based on short-term data. This 
technique has two peculiarities: (i) in order to predict static 
creep (relaxation) curves, the method employs some 
parameters of the fl-relaxation region, which can be found 
in high-frequency dynamic tests only; and (ii) good 
agreement between observations and their prediction is 
demonstrated only when an adjustable parameter is 
introduced into the model (see, for example, Figs. 11 and 
12 in Ref. s and Figs. 8 -10  in Ref. 9 

The objective of the present paper is to derive constitutive 
equations which would correctly predict the long-term 
viscoelastic behaviour of amorphous polymers. Our purpose 
is to develop a model that may be employed in applied 
studies to estimate the effect of material aging on the 
mechanical response based on 'standard' tests. Such a 
model should be a relatively simple to carry out numerical 
analysis, and it should contain adjustable parameters to be 
determined in mechanical short-term tests. From this 
standpoint, the model 8-t° has a serious drawback, since it 
requires experimental data of high-frequency tests. On the 
other hand, sincefl processes affect physical aging in the 
region, our neglect of their influence is a simplification that 
will be justified later by comparison of numerical prediction 
with experimental data. 

To derive constitutive relationships, we refer to the 
concept of transient networks, where the processes of 
creation and annihilation of chains are governed by the free 
volume fraction. The theory of transient reversible networks 
was proposed by Green and Tobolsky II and was developed 
in a number of works (see, for example, Refs. 12-17). A 
review of the temporal network theory can be found, e.g. in 
Ref. is. A version of this concept was applied in Ref. 19 to 
describe the short-term response in aging polymers (both 
amorphous and semicrystalline). 

Unlike previous studies, we intend to incorporate a model 
of adaptive links with the free volume theory 2°. The free 
volume concept has been widely employed to analyze 
viscoelastic ~roperties of aging media (see, for example, 
Refs. 1.2,2~-2_). The novelty of our approach consists of the 
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use of different free volumes for different kinds of adaptive 
links. A similar idea was proposed earlier by Aklonis 2¢, but 
in another context. 

The exposition is organized as follows. We begin with a 
version of the model of adaptive links and establish some 
connections between the rates of breakage and formation of 
new links. As a result, we arrive at differential equations for 
the numbers of links of various kinds, similar to equations in 
population dynamics. Coefficients in these equations are 
assumed to depend on the total free volume fraction, which 
equals the sum of the free volume fractions for different 
kinds of links. Afterwards, we introduce kinetic equations 
for free volume fractions and compare the results of the 
numerical analysis with experimental data for several 
polymeric materials. Finally, we determine adjustable 
parameters of the model by fitting data obtained in short- 
term creep and relaxation tests, calculate the material 
response in long-term tests, and validate the model by 
comparing the results of the numerical simulation with 
experimental data. 

A MODEL OF ADAPTIVE LINKS 

According to the concept of transient reversible networks 17, 
a viscoelastic medium is treated as a network consisting of 
polymeric chains connected to junctions by sticky func- 
tional groups. An active chain (both ends of which are 
connected to separate junctions) is modelled as an elastic 
spring (link). The snapping of one end of an active chain 
from a junction is tantamount to the breakage of the link. 
When a dangling chain captures one of the junctions in its 
neighbourhood, a new adaptive link is assumed to be 
created. 

It is supposed that M different kinds of links exist which 
correspond to M different relaxation times. Referring to the 
polymer dynamics theory, we assume that a random walk of 
chain molecules is determined by potentials that are 
characterized by several length scales: bond length, 

2 5  persistence length, coil diameter, etc. . From this stand- 
point, any kind of adaptive link may be treated as 
corresponding to interactions between chains with some 
characteristic length. 

We denote by Xm(t,r) the number of links of the mth kind 
which have arisen before instant r and exist at instant t, and 
by J?0 the number of initial links not involved in the 
reformation process. The quantities Xm(t,r) and X0 are 
determined per unit volume in the reference configuration. 
We introduce relative rates of reformation 

1 OXm 
ym(r)= 2m Or (r,r) (1) 

where Xm =Xm(0,0), and the breakage functions gm(t,r) 
which equal the relative number of adaptive links of the 
mth kind existing at instant r and broken before instant t. 
One can write 

Xm(t, O) = Xm(O, 0)[1 -- gm(t, 0)] =.f(m[ 1 -- gin(t, 0)] 

oX,.  (t, r) = OXm 
O--r- ~ (r, r)[1 - gm(t, 7")1 =- f(m3'm(7-)[1 -- gin(t, 7")1 

(2) 

Substitution of the expressions shown as equation (2) into 
the formula 

[ t OXm 
Xm(t , t )=Xm(t ,O)+ o-~-r-r (t, 7")dT" 

yields 

X m ( t , t ) = X m { 1 - - g m ( t , O ) +  Ito'Ym(r)[1--gm(t,r)]dr} 

(3) 

The balance equation (3) is analogous to integral equations 
developed by Yamamoto 13, and Tanaka and Edwards 17. 
However, two aspects should be emphasized which distin- 
guish our approach from conventional network theories. 

(1) Equation (3) is derived for the function Xm of tWO 
instants, t and r, while the standard conservation equa- 
tion is written for the chain-distribution function which 
depends on the current instant t and the end-to-end 
vector. 

(2) Equation (3) can be solved explicitly (see below), while 
conventional equations for the chain-distribution func- 
tion do not permit analytical solutions to be found even 
in the simplest cases. 

At the beginning, we consider non-aging viscoelastic 
media with time-independent mechanical properties. This 
means that 

Xm(t, t) = X'n' 7m(t) = "gmO, gm( t, r) = gmo(t -- r) (4) 

It follows from equations (3) and (4) that 

f'0[1 gmo(t) = 3/nO -- gm0(r)] dr 

Differentiation of this equality implies that 

dgmo 
- -  ( t )  = "Ym0[1 - gmo(t)], gmo(O) = 0 ( 5 )  

dt 

Solving equation (5), we find that 

gmo(t) = 1 - -  exp( - 7nO t) (6) 

We substitute the expression shown as equation (6) into 
equation (2), use equations (4), and obtain 

Xm(t, O) = Xm exp( - "[mOt), 

OXm (t, r) = f(mTmO exp[ - 2/mo(t - r)] (7) 
0z 

Combining equation (4) and (7) with the formula 

Xm(t, r) = Xm(t, t) -- -~S (t, S) ds 

we find that the total number of adaptive links (per unit 
volume) arisen before instant r and existing at instant t 

M 

X(t, z) = 2 0 q- Z Xm(t' 7") (8) 
m = l  

is calculated as 

X(t, r) = 2 no + Om exp[ -- 3'too (t -- r)] (9) 
m = l  

where 

M 2m 
2= Y 

m = 0  

(lO) 

In linear viscoelasticity, the function X(t,r) coincides with 
the relaxation kernel of a viscoelastic medium (see, for 
example, Ref. 26). According to equation (9), the relaxation 
kernel of an arbitrary non-aging viscoelastic material can be 
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presented in the form of a truncated Prony series with posi- 
tive coefficients. 

Let us consider a subsystem of a system of adaptive 
links of the mth kind, which contains Vm(r) links at instant 
r, and calculate the number of links vm(t) in this subsystem 
at an arbitrary instant t. By analogy with equation (2), we 
write 

Vm(t ) = Vm(r)[1 - -  gin(t, 7")] (1 1) 

Differentiation of equation (1 1) with use of equations (4) 
and (5) implies that 

l dv'n 
urn(t) dt (t) = - "/,nO (12) 

According to equation (12), equation (5) means that for any 
subsystem in a system of adaptive links of the mth kind, the 
relative rate of breakage equals 3~m0. 

Our aim now is to account for the effect of aging on the 
relaxation modulus. For aging viscoelastic media, equations 
(4) are not valid, and the balance equation (3) contains three 
unknown functions Xm(t,t), 7m(t), and g 
re(t, 7"). 

Two main approaches to the analysis of equation (3) may 
be distinguished. According to the first (see, for example, 
Refs. 17,,,), the chain generation rates %, and the chain 
breakage rates ag~/at are prescribed as functions of the 
current state of the transient network, while equation (3) 
determines the number of active chains Xm(t,t). 

According to the other approach, the breakage functions 
g~(t,~') are assumed to satisfy the partial differential 
equation (5) 

agm - - ( t ,  7 " )=-%, ( t ) [ l -g ,n ( t ,~ ) ] ,  gm(7",7")=0 (13) 
at 

with time-dependent coefficients 1,,,(t). Given reformation 
rates "ym(t), equation (13) is treated as a governing equation 
for the breakage functions gm(t,7). After solving this equa- 
tion, equation (3) may be employed to calculate the total 
number of adaptive links Xm(t,t) of the mth kind. 

Following this approach, we find from equations (11) and 
(13) that the functions 

Xm(t,O ) I OX m 
n'n(t)= Xm ' Nm(t, 'c)-- 5( m a~- (t,T) (14) 

satisfy the differential equations 

1 dn m 
n'n(t) dt (t) = - 'ym(t) ,  nm(O ) = 1, 

1 aN., 
- -  (t,7")= -7"n(t) ,  N'n(r, 7")='Ym('r) (15) 

Nm(t, r) at 

It follows from equation (15) that the breakage and reforma- 
tion of adaptive links in an aging viscoelastic medium are 
determined by the functions "y'n(t) = T~- 1 (t), where T m is the 
mth relaxation time. With reference to the time-temperature 
superposition principle (see, for example Ref. ~8), the 
relaxation times Tm are assumed to change in time similarly 
to each other, which means that the shift factor 

Tin(t) 
a(t) -- (16) 

T,.0 
is independent of the index m. Equation (16) implies simi- 
larity of the reformation rates as well 

,Ym(  t )  = "YmO (17) 
a(t) 

According to equation (17), the physical aging of polymers 
is determined by the function a(t). The logarithmic deriva- 
tive of this function, the so-called aging rate 

d log a 
/2 - (log = logl0) 

d log t 

was introduced by Struik I and used in a number of studies 
dealing with the mechanical and dielectric response in aging 
polymers. The functions a(t) and/2(t), treated as measures of 
the material aging, have two obvious advantages: (i) they 
are easy to be determined using experimental data obtained 
in standard creep (relaxation) tests for various elapsed 
times; and (ii) the aging rate/2 depends feebly on the elapsed 
time and the temperature (9 of annealing (see Ref. l). The 
main drawback of these measures is that they do not reveal 
physical reasons for the aging process. To refine this 
approach, Struik z2'23 established a correlation between 
changes in the free volume fraction f and the shift factor 
a. To develop the Struik model, we consider the free volume 
concept in more detail. 

A MODEL OF THE FREE VOLUME 

According to the conventional free volume theory (see, for 
example, Ref. 2J), some volume V is ascribed to each 
polymeric chain. This volume consists of two parts: the 
occupied volume Vo and the free volume Vf 

V=Vo+V,, 

Since the quantities V, Vo, and Vf are not observed directly, 
it is convenient to write this equality for specific volumes 
(per unit mass) 

v = v o -4- vf (18) 

The left-hand side of equation (18) is determined in standard 
dilatometric tests, but the amounts Vo and vf cannot be mea- 
sured separately. 

To distinguish the occupied volume vo and the free 
volume vf, we assume that under isothermal loading at a 
constant temperature ®, these quantities tend to some 
equilibrium values ~o(®) and ~f(O), but the rates at which 
the equilibria are approached essentially differ. After 
quenching from some temperature ® 1 > (9 to a temperature 
(9, the rate of change in Vo is supposed to be large, while the 
rate of change in ve is comparatively small. Since we are 
concerned with rather slow processes (aging), we assume 
that the occupied volume Vo immediately reaches its 
equilibrium value 

Vo(te) = Vo((9), te > 0 

where te is the time elapsed after quenching. 
The volume % is assumed to increase linearly with 

temperature 

5o((9) = Vo((gr)[ 1 + 6~(® - (gr)] (19) 

where ~o((gr) is the specific occupied volume at the 
reference (e.g. room) temperature (gr, and h is the 
coefficient of thermal expansion. In the general case, 
the specific free volume vf is a function of elapsed time 
t e and temperature (9. Expanding this function into the 
Taylor series in temperature and omitting the non-linear 
terms (as has already been done with equation (19)), we 
obtain 

v/((9, re) = v°(tc) + avf ~ e  ((gr, te)((9 -- (gr) 
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Figure 1 The specific volume v (cm 3 g-i)  versus  elapsed time t~ (h) for 
poly(vinyl chloride) Solvay quenched from 100°C to a temperature O°C. 
Circles, experimental data obtained by Struik 23. Curve l, O = 40; curve 2, 
O = 50; curve 3, O = 60; curve 4, O = 70. The solid lines represent their 
approximation by equation (20) with the following parameters. 

0 c I 104 c 2 

40.0 0.7267 --2.2364 
50.0 0.7283 --2.2946 
60.0 0.7300 --2.3772 

0.855 

0.84~ 

3 

I I 

- 1 l o g  t~ 2 

Figure 2 The specific volume v (cm 3 g-t)  versus elapsed time te (h) for 
polycarbonate Macrolon-8032 quenched from 155°C to a temperature O°C. 
Circles, experimental data obtained by Struik 23. Curve 1, 19 = 100; curve 2, 
O = 110; curve 3, O = 120. The solid lines represent their approximation 
by equation (20) with the following parameters. 

~} C I 104 C 2 

100.0 0.8504 --4.3539 
110.0 0.8523 --5.0004 
120.0 0.8540 --5.8037 

w h e r e  v ° ( t e )  = vf(t e, Or) .  This equality, together with equa- 
tions (18) and (19), implies that 

v(O, re) = %(O011 + ,~(O -- Or)] + vO(t~) (20) 
where 

1 012t" ( O r ,  te) 
c~ = & + ~ o ( ® r ~  Ot~ 

Experimental data for poly(vinyl chloride) and polycarbo- 
nate plotted in Figures 1 and 2 together with their approxi- 
mations by the linear function 

V=Cl +c2 log te (21) 

demonstrate that the adjustable parameter 
Ov 

C 2 - - - -  
0 log t¢ 

depends weakly on ® (it increases by about 20% with the 
increase of temperature in the range of test temperatures). 
For simplicity, we will neglect this dependence, which is 
equivalent to the assumption that the coefficient of thermal 
expansion a in equation (20) is constant. To determine the a 
value, we plot the specific volume v(O,te) at a fixed elapsed 
time te versus temperature {9, and approximate the experi- 
mental data by linear dependencies; see Figure 3. 

It follows from equation (20) that 

V(O r, ~ )  : ~'o(Or) -t- V0(~) (22)  

Subtracting equation (22) from equation (20), we obtain 

,a12r(t~) = 1 2 ° ( t ~ )  - 12°(2) 

= 12(1~), te ) --  V(Or ' OZ) - -  Ot([~) - -  ~)r)Vo(Or) 

Dividing the increment of the free volume Avf by the 
specific volume v, we calculate the increment of the free 
volume fraction 

V(Or ' oc) ~o(Or)  
Af(&) = 1 a(® --  O r ) -  (23) 

12(O, re) 12(Or, t¢) 

To describe changes of the free volume fraction in time, we 
suppose that the total increment of the free volume equals 
the sum of the increments of the free volumes for all kinds 
of polymeric chains (adaptive links) 

M 

A f =  ~" Afro (24) 
m=l  

Here Afro is the increment of the free volume fraction of the 

0.732 

v 

PVC 

0.72( 

1 

i i i i i 

40 @ 120 

~i 855 

v 

PC 

0.849 

F i g u r e  3 The specific volume v (cm 3 g i) at t e = I (h) versus temperature 
®°C for (curve 1) poly(vinyl chloride) Solvay, and (curve 2) polycarbonate 
Macrolon-8032. Circles, experimental data obtained by Struik 23. The solid 
lines represent their approximation by linear functions with 
or= 1.73 × 10 -4 (I/K) for poly(vinyl chloride) and ~ = 1.80 x 10 -4 (I/ 
K) for polycarbonate. The former value is in agreement with 
~=2 .07  × 10 - 4  (I/K) found for poly(vinyl chloride) Solvic 229 by 
Schwarzl and Zahradnik 29 
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mth kind of links 

Afm(te) = Vf'm(te) -- Vf'm(°°) (25) 
v(G, t~) 

where vf,,, is the flee volume corresponding to an adaptive 
link of the mth kind. Equation (24) allows us (at least, 
phenomenologically) to account for the effect of/3 processes 
on the viscoelastic response in the a region by assuming that 
some kinds of adaptive links have characteristic times 
located in the/3 region. 

Since the free volume fraction is small compared with 
unity and the effect of thermal expansion is rather weak, the 
specific volume v(®,te) in equation (25) can be replaced by 
its limiting value at room temperature v(Gr,~). As a result, 
we obtain 

dXfm(te) --  Vf, m(te) -- Vf, m(~)  (26) 
v(Gr, o~) 

With reference to Kovacs 3°, we describe changes in the flee 
volume Vf, m by the kinetic equation 

dvf, m 
dt e (te) = - -  rm[Vf, m(te) -- Vf, m(°C)] (27)  

where I'm are rates of approaching the equilibria. 
Unlike the original Kovacs model and its refinements (see 

Refs. 2,21.24,3~ and references therein), we do not assume that 
the quantities I" m depend on the free volume, but treat them 
as constants. This simplification allows us to reduce 
significantly the number of adjustable parameters and to 
determine these parameters by fitting data in the standard 
dilatometric tests. On the other hand, our assumption 
neglects non-linearities in the volume recovery kinetics. 
The non-linear effects are small in a reasonable, from the 
engineering standpoint, interval of time (ranged, for 
example, from 106 to 107 (S) when the difference Gg - G 
is rather large (e.g. exceeds 5°C for poly(vinyl acetate); see 
Ref. 30). For smaller temperature jumps Og - (9, the non- 
linearity reveals itself earlier, but in this case the entire 
approach becomes questionable, since in the non-linear 
region the kinetics of changes in the relaxation spectra 
decouple from the kinetics of volume recovery; see 
Refs. 32,33 Since experimental knowledge about the 
decoupling phenomenon is quite limited (see a discussion 

34 of this question in Ref. - ), we confine ourselves to the linear 
region of volume recovery (this is the case, for example, 
when the material in question is cooled by tens of degrees, 
which is of essential interest for applications in polymer 
engineering). To account for the entire range of tempera- 
tures below Gg, non-linear constitutive equations should be 
analyzed where the kinetic coefficients I"m are functions of 
temperature and the free volume fraction (see Ref. 2~). 

Integration of equation (27) results in 

Vf, m(te) -- Vf, m(°C ) = [Vf, m(0 ) -- Vf, m(°C)] exp( - Fmte) 

Substitution of this expression into equations (24) and (25) 
implies that 

M 

Af( te )  = E ~m exp( - ~mte) (28)  
m=l  

where 
•f,m(0) --  Vf, m(OO ) 

v(G. 2) 

Given rates of approaching the equilibria I'm (m = 1 . . . . .  M), 
the adjustable parameters ~'m are determined by fitting 
experimental data; see Figure  4. This figure demonstrates 
that equation (28) ensures the same level of accuracy in 
fitting data for poly(vinyl chloride) and polycarbonate as 

la  2b 2a 
0.0119 0.032 

lb 

A f  A f  

PVC PC 

0.0113 t 0.031 

- 1 log  t .  2 

Figure 4 The increment of the free volume fraction Af versus elapsed 
time te (h) for poly(vinyl chloride) Solvay quenched from 100°C (curves 1) 
and polycarbonate Macrolon-8032 quenched from 155°C (curves 2). 
Circles, treatment of experimental data obtained by Struik 23. The solid lines 
represent approximations by (a) equation (29) with /31=0.0117, 
/32= -2.2364 × 10 -4 for poly(vinyl chloride) and 131 =0.0317, 
132 = - 4 . 3 5 3 9  × 10 -4 for polycarbonate (PC); and (b) equation (28) 
with the following parameters. 

I'm(h -~ ) ~',,, PVC ~',~, PC 

0.0001 0.0107 0.0296 
0.0100 0.0009 0.0019 
1.0000 0.0003 0.0005 

the conventional linear dependence 

Atf(te) =/31 +/32 log te (29) 

An important drawback of equation (28) is that it requires a 
larger number of adjustable parameters to be found (com- 
pared to equation (29)). Its significant advantage lies in the 
opportunity to treat changes in the free volume fraction as 
kinetic processes of the first order. It is worth noting that 
some expression similar to equation (28) was proposed 
by Knauss and Emri 35 for the so-called thermal creep 
function. 

We assume now that the shift factor a in equations (16) 
and (17) is a function of the excess free volume fraction Af. 
A similar approach was employed in several recent studies 
dealing with the non-linear viscoelastic response in solid 
polymers (see, for example, Refs. 35-37). Unlike those 
works, where the shift factor a was expressed in terms of the 
free volume fractionfwith the use of the Do®little equation, 
we set 

a r (G ,  re) = ar, l (G)ar,  2(Af)  (30)  

where the thermal shift factor ar, j (G)  determines the shift of 
a creep (relaxation) curve obtained after annealing for a time 
t o at a temperature G with respect to the reference curve 
obtained after annealing for a time t o at a temperature G °, 
and ar, z(Aj)determines the shift of a creep (relaxation) curve 
obtained after annealing for a time te at a temperature G ° 
with respect to the reference curve. We assume an Arrhenius 
formula for the shift factor ar, j 

~ ( '  ' )  
l°gar 'L(G)-- R~-nlO ~) 06 (31) 
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0.031 0.032 3.0 
0.8 1.0 

l og  at ,  2 

PVC 

-1.2 

A f  (PC) 

i I i I i "~ 

0.0113 A f (PVC) 

lOg at ,  2 

PC 

log  at ,  2 

0,0 
-2.0 

0 
0.0119 

Figure 5 The relative shift factor at.2 [reduced to te ° = 5.33 (h)] versus the 
increment of the free volume fraction Af for poly(vinyl chloride) Solvay 
quenched from 100°C to 40, 50 and 60°C (curve 1), and for polycarbonate 
Macrolon- 8032 quenched from 155°(2 to 100, 110 and 120°C (curve 2). 
Circles, treatment of experimental data obtained by Struik 23. The solid lines 
represent the approximation of the exP~4rimental data by equation (32) 
with Cj = 49.843, C 2 .= - 4.3111 × 10 for poly(vinyl chloride) and 
C~ = 84.553, C 2 -= - 2.6905 × 104 for polycarbonate 

where AH is the activation enthalphy, and R is the Boltz- 
mann constant, and propose a linear dependence for the shift 
factor a r,2, 

log ar,2(Af) = Cl + CeAf (32) 

where CI and C2 are temperature-independent parameters, 
which are determined by fitting experimental data obtained 
in dilatometric and creep tests. A weak dependence of the 
adjustable parameters Cl and C 2 on temperature is con- 
firmed by experimental data for poly(vinyl chloride) and 
polycarbonate, depicted in Figure 5. 

To check equation (30), we begin with experimental data 
for polystyrene specimens quenched from the glass transi- 
tion temperature @g = 100°C to 191 = 90°C and 192 = 95°C 
and annealed for a time te. According to equation (30), the 
curves log a,,z versus log te determined at different tem- 
peratures Ok should coincide after a vertical shift by log at,1. 
This assertion is confirmed with a high level of accuracy by 
data plotted in Figure 6. 

We proceed now with data obtained in short-term 
relaxation tests for polystyrene specimens quenched from 
19g = 100°C to 191 = 56°C and 192 = 90°C and annealed for a 
time te. According to equation (30), to construct a master 
curve, it suffices to shift along the time-axis relaxation 
curves measured at various temperatures. This statement is 
confirmed by data depicted in Figure 7. 

CONSTITUTIVE EQUATIONS FOR A VISCOELASTIC 
MEDIUM 

We confine ourselves to relatively slow processes, the 
characteristic times of which exceed essentially the time 
necessary for stress in a broken link to relax, and assume 
that the strain energy density of the entire transient network 
equals the sum of strain energy densities for active chains; 
see Ref. 17 

An adaptive link of the mth kind is modelled as a linear 
elastic spring with a rigidity c. The natural (stress-free) 

O 

I O I } ; 

log t,  

F i g u r e  6 The relative shift factor ar.2 versus the elapsed time t~ (min) for 
polystyrene quenched from o , o 100 C to 90°C (empty circles) and 95 C (filled 
circles). The parameter at.2 is calculated for t o = 5 (min) at ® = 90°C and 
for t o = 10 (rain) at 0 = 9 5 ° C .  Circles, treatment of experimental data 
obtained by Plazek et aL 3s. Filled circles are shifted along the vertical axis 
by log at, t = 0.4 to construct a smooth master curve. According to equation 
(31 ), the latter value implies that AH = 48.92 (kcal mol - t ) 

1.2 

log o- 

0.1 

0 
0 o 

\ 
- 1 l o g  t ,5 

Figure 7 The stress a (MPa) versus time t (min) for polystyrene quenched 
from 100°C and annealed for t o = 15 (h). The master curve (reduced to 
O = 56°C) is constructed using experimental data obtained by Matsuoka et 

al. ~9 at temperatures Oi =56°C (empty circles) and 0 2 = 9 0 ° C  (filled 
circles). The relaxation curve measured at 02  is shifted horizontally by 
log at, I = 1.41 which corresponds to AH = 22.72 (kcal mol - I ) .  Curve l, 
approximation of the short-term master curve by equation (45) with 
t~ = 3.06 (GPa) and 

~/m 3~m0 (min -I) 

0.1299 0.00005 
0.4560 0.00050 
0.1983 0.00500 
0.1268 0.05000 
0.0749 0.50000 

Curve 2, prediction of the long-term relaxation curve at ® = 56°C 

configuration of  an adaptive link which merges with the 
system at an instant z coincides with the actual configuration 
of the network at that instant. This assertion is equivalent to 
the hypothesis that the stress in a dangling chain is totally 

1332 POLYMER Volume 39 Numbers 6-7 1998 



Long-term visoelastic behaviour of aging polymers: A. D. Drozdov 

relaxed before this chain catches a new sticky junction. The 
potential energy of an active chain is calculated as 

1 2 
Wm(t, 7") = ~ce,(t,  7") (33) 

where e,(t,7") is the strain at the current instant t in a link 
created at instant 7". 

Let 7(7") be the unit vector directed along the link at the 
instant of its formation, and ~(t) the (macroscopic) strain 
tensor in a viscoelastic medium at instant t. One can write 

~,(t, r) = l(r).[g(t) - ~(r)l.l(r) (34) 

where the dot stands for the inner product. For uniaxial 
deformation, we can set 

~(t) = e(t)~O (35) 

where ~ is the unit eigenvector of the strain tensor. Substitu- 
tion of equations (34) and (35) into equation (33) implies 
that 

1 2 
Wm(t , 7") = ~c[e(t) - e(7")] sin 4 0 (36) 

where the angles 4~ and 0 determine the position of the 
vector l(r) in a spherical coordinate frame connected with 
the vector ~. Summing up the potential energies, and assum- 
ing that the medium is isotropic (which means that no pre- 
ferable direction exists for adaptive links), we find that the 
strain energy density dWm(t,  7") (per unit volume in the refer- 
ence configuration) of adaptive links of the mth kind that have 
arisen within the interval 7",r + dr is determined as follows: 

c aXm t dlTVm(t, 7") = ~[e(t) - e(r)] 2 ~ ( ,  r) dr 

× I2o~d~ (~s in  50dO 

( i r  dq~ f 2 s i n O d 0  

By analogy with equation (37), the strain energy density 
Wm(t, 0) (per unit volume in the reference configuration) 
of the initial links of the ruth kind equals 

ITVm(t, O) = ce2(t)Xm(t, 0) dq~ sin 5 0 dO (38) 

z ~2 ° d~ f ~ s i n O d O  

Calculating the integrals in equation (37) and (38), we find 
that 

~Vm(t,O)=~Xm(t,O)E2(t), 
dfVm(t, r) = ~- aX_~_m (t, r)[e(t) - e(r)] 2 dr (39) 

2 Or 

where e=(4/15)c. Summing up the potential energies 
(equation (39)) for the adaptive links existing at an instant 
t, we obtain the total potential energy of the network 

_ 2~ M / W(t) = 2XoE2(t)-~- ~ l  ~. Xm(t' O)E2(t) 

~ (t, r)[e(t) - e(r)] 2 dr 

Substitution of equations (10) and (15) into this equality 

implies that 

W(t)  .= ri0e2(t) -t- rl m {nm(t)e2(t) 
m = l  

X' ) + o N m ( t ' r ) [ e ( t ) -  e(r)] 2 dr} (40) 

where # = ~2. 
The stress a(t) is calculated as follows (see, for example, 

Ref. 4o) 

OW(t) 
tr(t) -- (41) 

a~(t) 

Combining equations (40) and (41), we find that 

e(t) = ~ [no + ~ .  rimnm(t)]e(t) 
m=l  

Bearing in mind that 

M 

r i o = l -  E rim 
m=l  

we obtain 

(( } o(t) = # 1 -  r im[1-nm(t)]  e(t) 
m = |  

~- E rim --E(7-)] d r  (42) 
m=l  

Equation (42) provides the constitutive equation for a non- 
linear viscoelastic medium with a strain-dependent relaxa- 
tion spectrum. The functions nm(t) and Nm(t,r) in the right- 
hand side of equation (42) satisfy equation (15), where the 
reformation rates Ym are determined according to equation 
(17). The parameters Ym0 in equation (17) equal the refor- 
mation rates in a medium quenched from the glass transition 
temperature 19g to the reference temperature 190 and 
annealed for the reference time t °. The shift factor ar in 
equation (17) is expressed in terms of the temperature 19 
and the excess free volume fraction Afwith the use of equa- 
tions (30)-(32), where the function Afis calculated accord- 
ing to equation (28) or equation (29). 

RELAXATION TESTS 

To analyze the constitutive model equations (15) and (17), 
equations (28)-(32), and equat;on (42), we consider the 
standard tensile relaxation test for specimens quenched 
from the glass transition temperature Og to a reference 
temperature 190 and annealed for a time te 

0, t < t e 
e(t) = (43) 

E, t ~ t e 

Substitution of equation (43) into equation (42) yields 

% ( 0 = #  1 -  rim[I--rim(t)] e (44) 
m=l  
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where %(t) = a(t + t~). We begin with short-term tests, the 
duration of which is essentially less than the elapsed time te. 
In this case, we can set 

ar(19 , t ÷ te) = ar(19 , te) ( 4 5 )  

Combining equation (17) and (45), we obtain 

ym(t) = YmO (46) 
at(19, te) 

It follows from equation (15) and (46) that 

nm(t) = exp [ Ym0( ] 
ar(19,  te)J 

Substitution of this expression into equation (44) implies 
that 

a te ( t )=#{1-m~ 1= r/m [1 - exp ( ar(r,'Ym°t -'~ ] } t e ) . ]  J (47) 

According to equation (47), a master curve can be con- 
structed of a set of relaxation curves measured at various 
temperatures 19 for the same elapsed time t o and plotted in 
bilogarithmic coordinates. Approximating the master curve 
by a Prony series, we determine the Young's modulus/z and 
the material parameters r/m; see curve 1 in Figure 7, where 
experimental data for polystyrene are presented. 

Short-term relaxation curves, measured at a temperature 
19 for different elapsed times t e and plotted in bilogarithmic 
coordinates, can be shifted horizontally by ar,2(t~) to 
construct a master curve. The shift factor ar,2 is plotted in 
Figure 8, where the experimental data are approximated by 
the linear function 

log ar ,2( te)  = bl + b2 log t e ( 4 8 )  

with adjustable parameters bj and b2. Since the function 
a2.r(te) is temperature-independent (see equations (26) and 
(32)), it determines also appropriate shifts of short-term 
relaxation curves at the reference temperature 190. 

Finally, to calculate a long-term relaxation curve with 
given parameters/~, b k ,  ~m, and ~m0, we integrate ordinary 

2.0 

log Gr, 2 

O 

0.0 o I 

1 log t~ 4 

Figure 8 The shift factor at,2 [reduced to t o = 1 (h)] v e r s u s  elapsed time t~ 
o 0 o (min) for polystyrene quenched from O~ = 100 C to 19 = 9 0  C. Circles, 

~9 treatment of experimental data obtained by Matsuoka e t  al." . The solid line 
represents the approximation of the experimental data by equation (48) with 
br = - 1.5132 and b 2 =0.8257 

differential equation (15), where the functions " y m ( t )  a r e  

determined by equations (17) and (48) 

Ym0 (49) 
" Y m ( t )  = 10b, tb  2 

and substitute the results obtained into equation (44). The 
long-term relaxation curve for polystyrene is plotted in 
Figure 7 (curve 2). The results of the numerical simulation 
demonstrate fair agreement with experimental data (empty 
circles), which means that the proposed model may be used 
to predict the response in aging specimens. 

CREEP TESTS 

To demonstrate the advantages of the model, we also predict 
strains in the standard creep tensile tests and compare results 
of numerical simulation with experimental data. A speci- 
men is quenched from some temperature above the glass 
transition temperature 19g to a temperature t9, annealed for a 
time te at the temperature 19, and loaded by the stress 

0, t < t e 
~(t) = (50) 

O, t ~ t e 

According to equation (42) and (50), the strain 
%(0 = e(te + t) is governed by the Volterra integral equation 

1 - ~Tm[ 1 - -  nm(t)] %(0 
m = l  

+ ~. nm Nm(t,r)[%(t)- %(r)] d r =  -~ (51) 
m = l  0 

In short-term tests, the shift factor a r is independent of t (see 
equation (45)), the reformation rates are determined by 
equation (46), and the differential equations (15) are inte- 
grated explicitly 

[  ,o0! ] 
nm(t) = exp ar(®, te)J' 

r) = --Ym° exp I q/mo(t - -  7")] Nm(t, 
ar(19, 'e) _ ~ e - ) J  

Substituting these expressions into equation (51), we obtain, 
after simple algebra, 

I' 
%(0 + o Q(t -  r)%(r) dr = -~ (52) 

where the relaxation measure Q(t) equals 
M 

Q ( t ) - - - m ~ l r l m [ 1 - e x p (  = ar(19,"/'n° t ' ~  ] te)J J (53) 

and the superposed dot stands for the derivative with respect 
to time. The solution of equation (52) reads 

ff 
%(0 = [1 ÷ C(t)] - (54) 

# 

where the creep measure C(t) is connected with the relaxa- 
tion measure Q(t) by the linear Volterra equations (see, for 
example, Ref. 26) j-, 

Q(t - r)C(r) dr (55) C(t)= - Q ( t ) -  o 

Q ( t ) = - c ( t ) -  fro C(t-r)Q(r)dz (56) 
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Figure 9 The shift factor ar.2 [reduced to t e = 3(h)] versus the elapsed 
time t~ (h) for poly(vinyl chloride) Darvic quenched from 85 to 23°C. 
Empty circles, experimental data obtained by Dean et al. m. The solid line 
represents their approximation by equation (48) with b[ = -0 .4881 and 
b2 = 1.0146. Filled circles, the shift factor at.2 [reduced to t e = 2.5(h)]. 
Asterisk, an experimental datum obtained by Read et al. 9 

We begin with a set of short-term creep curves % = ere(t) 
measured at the reference temperature ®0 for various 
elapsed times 6. First, we construct a creep master curve 
by horizontal shifts of the creep curves and find the shift 
factor ar,2 as a function of the elapsed time 6. The function 
ar, 2 for poly(vinyl chloride) is plotted in Figure 9, together 
with its approximation by equation (48). The empty circles 
in Figure 9 are determined by constructing a master curve 
(reduced to t o = 3 (h)) based on experimental data provided 
by Dean et aL l°. The adjustable parameters bj and b2 are 
found to ensure the best fit of these data. Afterwards, we 
calculate the dependence ar,2(te) reduced to te°=2.5 (h) 
(filled circles in Figure 9) and compare the numerical 
results with a datum obtained by Read et al. 9 for the same 
material (asterisk). Small deviations between the predicted 
and measured quantities mean that the values of bk are 
reliable. 

We now approximate the short-term creep master curve 
(reduced to the reference elapsed time t °) by equation (54), 
where the creep measure C(t) is presented by a truncated 
Prony series 

M 

C(t)  ~- Z Xm[l  - exp( - "Ym0t)] (57 )  
m = l  

Given M and the reformation rates 7m0, the coefficients X,, 
and the elastic modulus tt are found to ensure the best fit of 
the experimental data; see Figure 10. 

To determine the relaxation measure Q(t) corresponding 
to the creep measure (equation (57)), the integral equation 
(56) is solved. Combining equations (56) and (57), we find 
that 

M 

Q(t )= - 
m = l  

Xm[1 -- exp( - "YmO t) - Pm(t)] (58)  

where the functions 

f t0exp[ P,,(t) = %,,0 - "Ymo(t - ~')]Q(r) dr 

0.25 

C) t O ~  - 
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I I I I I I I - -  I I I 

-5.5 logt 5.5 

Figure 10 The short-term cree0P compliance J (GPa -~) versus time t (s) 
[the master curve is reduced to t e = 72 (b)l for poly(vinyl chloride) Darvic 
quenched from 85 to 23°C. Circles, treatment of experimental data obtained 
by Read et al. 9. The solid line represents their approximation by equation 
(54) and equation (57) with tt = 3.46 (GPa) and 

x,, %,0 (s-') 

0.3907 0.000005 
0.1076 0.000050 
0.0660 0.000500 
0.0370 0.005000 
0.0 194 0.050000 
0.0233 0.500000 
0.0266 5.000000 

satisfy the ordinary differential equations 

dPm 
dt (t) =,Ymo[Q(t) - Pm(t)], Pro(O) = 0 (59) 

Equations (58) and (59) are integrated numerically to calcu- 
late the dependence Q = Q(t), which, in turn, is approxi- 
mated by the truncated Prony series 

M 

Q(I) = - Z ~m[1 -- exp( --'Ym0t)] (60) 
m = l  

The adjustable parameters ~m are found to ensure the best fit 
of the relaxation measure Q(t). 

Given M, b,, ~m, and ~m0, the material response in long- 
term creep tests is determined by the integral equation (51), 
where the functions nm(t ) and Nm(t,r) obey equation (15). 
We introduce the notation 

I Nm(t )  = 0 Nm(t '  r) dr,  X~m(t ) = Nm(t ,  "r)Jt~('l') dr  

(61) 

and present equation (51) in the form 

1 -  ~ m [ 1 - n m ( t ) - N , . ( t ) ]  Jt~,(t) = ~ - I  
m = l  

where 

M 

+ ~ .  ~m'P,,(t) (62) 
m = l  

%(0 
J t~( t )=  - -  

o 

POLYMER Volume 39 Numbers 6-7 1998 1335 



Long-term visoelastic behaviour of aging polymers: A. D. Drozdov 

It follows from equations (15) and (61) that the function 

Cbm(t ) = nm(t ) + Nm(t) - 1 

satisfies the linear homogeneous differential equation 

d~m 
dt (t)-=- --'ym(t)dPm(t) 

with the zero initial condition ~m(0) = 0, which implies that 

¢~m(t) = 0 (63) 

Combining equation (62) and (63), we find that 
M 

Jte(t)=/z-]-I- ~ .  ~lmXlZm(t) (64) 
m = l  

According to equation (15) and (61), the function ~lm(t) is 
governed by the ordinary differential equations 

dxIt m 
d----i- (t) = - 7m(t)[Jte(t) - ~m(t)], ~m(0) = 0 (65) 

where the function "ym(t) is determined by equation (49). 
We calculate the long-term creep compliance .Ire(t) by 

solving numerically equation (64) and (65), and compare 
the results of calculations with experimental data. Figure 11 
demonstrates fair agreement between experimental data and 
numerical prediction, which means that the model may be 
used to describe the long-term response in aging polymers. 

CONCLUDING REMARKS 

A new model is derived to predict the long-term 
viscoelastic response in physically aging polymers. The 
model incorporates the concept of transient polymeric 
networks with free volume theory. 

An aging viscoelastic medium is treated as a network of 
adaptive links (elastically active chains) which emerge 
(reformation of dangling chains) and break (snapping of 
ends of active chains from temporal junctions). It is assumed 
that M different kinds of adaptive links exist, which 
correspond to different characteristic lengths of the inter- 
action between chains. 

The balance equation (3) is developed for the numbers of 
links of various kinds. An explicit solution of this equation 
is derived for non-aging materials, which expresses the 
breakage functions in terms of the reformation rates. Based 
on equation (12), kinetic equations (15) are proposed for the 
numbers of adaptive links of various kinds. Coefficients in 
these equations (the reformation rates) are assumed to 
satisfy the superposition principle (equation (17)), where the 
shift factor a is a function of temperature and increment of 
the free volume fraction; see equation (30). 

With reference to the experimental data for poly(vinyl 
chloride) and polycarbonate, simple kinetic equations (27) 
are suggested for the free volume fractions of adaptive links 
of various kinds, and a linear dependence (equation (32)) is 
proposed to express the relative shift factor at.2 in terms of 
the excess free volume fraction Af. For isothermal loading, 
this dependence may be reduced to the linear function 
equation (48) with two adjustable parameters. 

Based on the model of adaptive links, the constitutive 
equation (42) is derived for a linear viscoelastic medium 
subjected to aging. Adjustable parameters in the constitutive 
relationship are determined by fitting experimental data 
obtained in short-term creep and relaxation tests for 
polystyrene and poly(vinyl chloride). To validate the 
model, its prediction for long-term creep and relaxation 
tests is compared with experimental data. The results of a 

0.50 

0.25 I I I I I 

-0.5 log t 5.5 

Figure 11 The long-term creep compliance J (GPa -I) versus time t (s) for 
poly(vinyl chloride) Darvic quenched from 85 to 23°C. Circles, experi- 
mental data obtained by Read et aL 9. The solid line represents the model 
prediction 

numerical analysis demonstrate fair agreement with obser- 
vations; see Figures 7 and 11, which may serve as a 
validation of the model. 
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